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Abstract —A development effort is described that yielded a compact
broad-band ECM module using soft and hard substrate material employing
microstrip, slotline, and coplanar line. Integrated functions include coun-
pling, limiting, upconversion, downconversion, broad-band amplification,
amplitude modulation, switching, gating, and stable frequency generation.
A high-level frequency converter with a + 28-dBm intercept point resulted
in high dynamic range, spurious-free operation (—45 dBc). Extremely flat
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amplification with low-current drain is achieved with distributed and cascode
FET amplifiers at S—C and X-bands.

I. INTRODUCTION

EDUCING THE size, weight, and power consump-

tion of modern electronic systems requires compact,
efficient, plug-in, multifunction modules. Key parameters
are broad bandwidth, flat frequency response, low power
consumption, high speed, high dynamic range, and low
spurious signal generation. This paper describes details of
the microwave substrate materials and layout to miniaturize
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the module. This module includes nine basic functions and
19 individual circuits. The design and experimental perfor-
mance of the various circuit functions are presented with
emphasis on the high-level, high dynamic range, frequency
converter; ultrastable, high-power dielectric resonator FET
oscillator; and two FET amplifiers: the distributed and the
cascode amplifiers,

JI. DESCRIPTION

A. Module Function

The module function is to convert an X-band RF signal
to an IF signal (2.6 to 5.2 GHz) with its own internal
Ku-band dielectric resonator FET oscillator (DRO). At IF,
the signal is amplified, split, and switched between various
IF channel paths that are gated, amplified, and attenuated
with a linear voltage variable attenuator (VVA). The IF
signal is outputted three places and inputted two places.
Finally the signal is upconverted to X-band and, using the
same DRO signal, amplified and outputted.

B. Module Layout ,

Fig. 1 illustrates the compact 7.1-in X 4.2-in X 0.8-in MIC
20-oz module. This module is plugged into external cir-
cuitry through the use of low VSWR spring-loaded RF
connectors developed by Selectro Corporation. This mod-
ule contains one X-band limiter, three 60-dB multipole IF
switches, two frequency converters, five couplers, four IF
amplifiers with a total gain of 80 dB, two 25-dB VVA’s,
one 36-dB X-band RF limiting amplifier, and one DRO.

. To prevent RF coupling between the circuit functions, to
minimize ground plane discontinuities, and to provide
lower level testability, the components were distributed

among nine individual assemblies placed within a one-piece

channelized case. Eight of the nine substrates are visible in
Fig. 1; the DRO and a one-piece printed circuit board
containing the control and bias circuitry are on the oppo-
site side. The soft substrate assemblies are made of either
0.015-in-thick Rogers 5880 Duroid (¢, =2.2) or 0.025-in-
thick 3-M Epsilam 10 (e, = 10.2) dielectric laminated to a
0.10-in-thick aluminum plate. Drop-in alumina substrates
(0.025 in thick) containing 3-dB RF and IF Lange couplers
or switch circuitry are bonded into pockets in the soft
substrate assemblies. The FET’s and p-i-n diodes are
soldered to small gold-plated copper pedestals attached to
the ground plane. Covers on both sides are soldered to the
plated aluminum chassis, sealing the entire unit hermeti-
cally.

C. Distributed Amplifier

A newly developed distributed amplifier simultaneously
achieves constant gain and low VSWR over an octave
frequency range. It has low power consumption in a small
size. The circuit exhibits high reverse isolation and uncon-
ditional stability, and it may be readily cascaded to achieve
higher gains.

Low VSWR and constant gain over an octave bandwidth
with unconditional stability is achieved using matched
lumped-clement input and output transmission lines with a
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Fig. 1. MIC module.
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Fig. 2. Distributed amplifier equivalent circuit.

FET embedded in each line. They are coupled with an
interstage gain equalization network as depicted in Fig. 2.
The input distributed line consists of the series inductor .
L1, the input FET Q1 series resistance—capacitance
(R 4,1 —C,,1) elements to ground, and the series inductor L2
terminated with resistance R1 (50 £). The output distrib-
uted line consists of the series inductor L7, the parallel
resistance~capacitance (R 4, —C,,,) of the output FET Q2
to ground, and the series inductor L6 to ground terminated
with R2 (50 ©). Good input and output match is obtained
by equating the characteristic impedance of the lumped-
element transmission lines to the source and load resis-
tances, both assumed to be equal to 50 Q. This relationship
is expressed below with the accompanying range of angular
frequencies (w) for which good match (less than 1.3:1
VSWR) exists with L1 = L2 and L6 = L7

2L1 o1
R1= Cor Ogswsx G Rl
2L6 1
= SIS
k2 Cds2 ’ O<e CdsZR2
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TABLE I
POLAR S-PARAMETERS FOR DEXCEL 2501 CHIP

Frequency S11 821 S12 S22 s21 K Gmax

(MHz) Magn Angl Magn Angl Magn Angl Magn Angl (dB) Factor or MSG
(dB)
2500 092 43 244 1404 0033 694 071 -14 775 048 180
3000 089 52 236 1330 0044 660 070 -17 746 058 173
3500 086 60 227 1257 0048 629 068 -20 712 071 167
4000 083 67 216 1190 0050 610 066 -23 669 087 164
4500 081 74 204 1134 0052 609 065 -26 619 095 159
5000 079 -80 193 1084 0053 620 064 29 571 108 142
5500 077 -86 184 1039 0054 635 063 -32 530 116 129

The interstage equalization network (L3, L4, R4) simulta-
neously matches Q1 to Q2 at the high-frequency end of the
band with minimal loss of gain due to R4 and equalizes the
gain over frequency through mismatch as well as resistive
loss in R4 at lower frequencies.

Dexcel 2501 FET chips used for both stages were oper-
ated at 3.5 V and 20 mA. They have a 1-um gate length
and 500-pm gate width. The S-parameters including wire
bond leads are listed in Table I. In evaluating S11 and §22,
R, =159, R, =250Q, C,;=0.5pF, and C; = 0.2 pF.

The circuit is analyzed with an equivalent circuit as
shown in Fig. 2 in terms of three voltage coupling factors,
namely K1, K2, and K3. Their product (K1-K2-K3)
relates the voltage developed across the load (V) to the
voltage available across the amplifier’s input port (0.5 V)
for maximum power transfer. The power gain of the
amplifier for equal source and load resistance values (Rl =
R2)is (K1-K2-K3)% The input voltage coupling factor is
the ratio of the voltage developed across the gate-to-source
capacitance of the input FET (V) to the voltage 0.5 V...
The interstage voltage coupling factor (K2) is the ratio of
the voltage across the gate-to-source capacitance of the
second FET (V,,) to V. Finally, the output coupling
factor (K 3) is the ratio of the voltage developed across the
load (V) to V,,,.

Equation (1) expresses K1 as a function of the input
circuit parameters

I/gsl 1

05 V.. 2 :
gen w°L1C,
(1= 1% oy, )

K1

(1)

At low frequencies, K is exactly equal to 1 (0-dB power
loss). At higher frequencies, the real part of the denomina-
tor decreases from unity while the imaginary part increases

from zero; the result is a nearly constant K1 when the
transmission line is matched, i.e.,

{2L1 1
Rl = and w< .
Cgsl Cgisl

The frequency range for which the input circuit is matched
and K1 is constant is relatively wide.

The voltage coupling of the output circuit transfer func-
tion (K3) from the input voltage across the output FET
(Vg52) to the load (V) is also relatively independent of
frequency because C,,, is embedded in a matched output
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transmission line. This coupling is expressed as

K3= I/()th
Vgsl
0.5, R,
14 R2  &’L6C,, L wC,,R, wL6
2R, 2 N2 2R,
()

where L6 = L7 = output line inductance, and g,,, = trans-
conductance of output FET.

Again, K3 for a matched output transmission line condi-
tion is relatively independent of frequency and is equal to
0.5,,,R2/(1+ R2/2R ;). For the FET used, g, = 0.033
mho, resulting in a (K1-K3)? of —2.5 dB, which compares
closely with computer-generated loss values of —2.7 to
—2.3 dB, respectively, across the 2.5 to 5.5-GHz band,
with a maximum input and output VSWR of 1.3:1 consid-
ering both input and output circuits. The use of two FET’s
significantly improves the amount of gain that can be
achieved per section of a distributed amplifier of this type.
The use of one FET per section [1] requires many stages to
obtain comparable gain.

The input and output circuits make the potentially un-
stable FET unconditionally stable for any input or output
load regardless of the interstage equalization network. This
feature was determined by examining the stability factor
and stability locations of input and output circuits individ-
ually.

The interstage coupling factor between the input voltage
across C,,; of Q1 to the input voltage across G, of Q2
depends on the interstage equalization network as well as
the transconductance of the first FET (g,,). Intuitively,
maximum transfer occurs when the output impedance of
the first FET is transformed to the complex conjugate of
the input impedance of the second FET, which is indeed
the situation when the analysis is performed (neglecting
feedback) as expressed in (3)

K2(max) = ( i (3)

gs2 _
V:gsl max 2ng52 R 252

where R ;,; = drain-to-source resistance of input FET, R, ,
= gate-to-source resistance of output FET. (K2)?(max) is
identical to that of a single FET’s maximum gain (stable).
S-parameter data at 5.5 GHz evaluates Gmax of 12.9 dB.
The overall power gain of the amplifier is (K1K2K3)?,
which is about 10 dB at the high frequency end, and which
can be equalized across the entire band.

Fig. 3 illustrates the 0.47-in by 0.63-in distributed
amplifier layout and final schematic showing all circuit
elements. The amplifier is constructed on Rogers 5880
Duroid. The capacitors (C1-C8) provide either low imped-
ance dc blocking or RF bypass. Inductor L8 provides a
bias inject to both transistors, which are connected in series
with respect to dc, conserving current (power). Voltage
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Fig. 3. Distributed amplifier layout and schematic.
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Fig. 4. Distributed amplifier gain response.

drops across R3 and R4, in conjunction with the dc voltage
supplied through inductor L9, provides gate bias for both
FET’s. The additional L5-C9 circuit elements on the
output of @2 FET were required for minimum deviation of
the gain across the frequency band.

Computer optimization yielded a flat gain of 10+0.25
dB and-a maximum VSWR of 1.4:1 over the range 2.6 to
5.2 GHz, with 55+ 5 dB of reverse isolation. The measured
gain of the amplifier (Fig. 4) was 13.25+0.25 dB, some-
what higher than the computer-génerated values, with a
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Calc Gain (dB) 109 + 0.4 89 + 04
Meas Gain (dB) 11+ 05 12 £ 0.6
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for 1 dB Gain ~
Conipression 23 13

Fig. 5. Cascode amplifier.

TABLE II
S —C BAND CASCODE AMPLIFIER GAIN VERSUS FREQUENCY FOR
Var10USs CIRCUIT CONFIGURATIONS

Gain (dB)
Frequency

{GHz) 1 2 3 4 5 6 7
25 7.76 1.61 8.08 8.61 921 10.17 10:50
3.0 7.27 161 7.64 8.36 9.16 10.36 10.80
35 6.83 1.62 7.24 8.17 9.21 10.53 11.05
40 6.44 1.85 6.86 8.04 9.30 10.65 11.22
45 6.10 173 6.61 8.06 9.51 10.70 11.27
5.0 5.76 1.85 6.33 81 979 - 1055 11.07
55 5.40 1.98 6.09 8.27 10.00 10.33 10.74
C1(pF) 0 0 0 0 0 0.05 0.04 °
Li(nH) 0 0 0 0 15 1.67
L2(nH) 0 0 0 1.86 4 2.3 29
Note A B o] C c o] Cc

Note A - Input Common Source FET Q1 Only
Note. B - Output Common Gate FET Q2 Only
Note C - Cascode Configuration

| maximum VSWR of 1.6:1 and an output 1-dB gain com-

pression power of 10 dBm.

D. Cascode Amplifier

Matching of medium and high power amplifiers over
wide bandwidths generally requires [2] multisection input
and output matching networks or a combination of these
networks with lossy feedback [3]. A novel cascade circuit

~ has been developed for this module, both at the IF and RF

bands, which achieves high gain and improved bandwidth
capabilities with a simple interconnection network between
the FET’s as depicted in Fig. 5. The drain of the input
common-source FET is connected through inductor L2 to
the source of the output common-gate FET.

The inductor provides natural broad-band flat internal
matching. The input shunt-C, series-L network provides
additional gain. The net effect is a flat gain versus frequency
with a 1-dB output power compression point that is fairly
constant over the operating frequency range. The unit is
very compact, since inductance values required for match-
ing are low and readily obtained with bond wires. The
amplifiers exhibit high input and output VSWR’s and are
used in a balanced arrangement using 3-dB Lange cou-
plers.

Table II depicts the computed gain across the 2.5 to
3.5-GHz band using the Dexcel 3615 medium power chips
with various combinations of circuit elements. Column 1
and column 2 illustrate the respective untuned gain of the
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Fig. 6. Multioctave cascode amplifier performance.

first common source FET and second common gate FET
individually, while column 3 illustrates the gain of the two
stages cascaded with no additional matching elements. The
overall gain is slightly less than the sum of the individual
gain when cascaded since the input impedance of the
second-stage common gate FET across the frequency range
is 33-Q real, not much different from 50 . As the value
interstage inductance ( L2) is raised, the overall gain of the
amplifier is increased. With L2 =1.86 nH, a minimum gain
variation over the band exists with an overall gain of
8.3340.29 dB as shown in column 4. As the inductance is
increased to 4 nH, the gain at the high frequency is
maximized to 10 dB with a low-frequency gain value of
9.21 dB as shown in column 5. This condition approxi-
mates interstage matching at the high frequency. Further
increase of inductance reduces the gain at the high
frequency. Adding the input shunt capacitance and series
inductance (C1-L1) elements to the input of the input
common source transistor raises and flattens the gain to a
value. of 10.4+0.25 dB across the band as shown in column
6. A slight redistribution of circuit elements as shown in
column 7 results in a higher gain of 10.9+0.4 dB with a
slight increase of gain variation across the band. The
measured gain of the S—C band cascode amplifier was
114 0.5 dB, very close to the estimated value.

HP 5001 medium power chips were used for the X-band
cascode amplifier. The equivalent circuit for the input
impedance of the common gate output stage, accurate to
10 GHz, is a 35-& resistor in paraliel with a 0.2-pF capaci-
tor. Above 10 GHz, the resistor’s value increases with
frequency and reaches 50 € at 15 GHz. The equivalent
circuit of the output impedance of the common source
input stage, fairly accurate to 15 GHz, is a 220-Q resistor in
parallel with a 0.125-pF capacitor. The inductance between
the stages, the value of which is selected to minimize the
interstage mismatch at the high frequency end of the band,
results in a calculated gain of 6.6 to 4.9 dB, decreasing in
value across the band. With the added C1- L1 input circuit
selected for flat gain, the overall gain was computer-opti-
mized to 8.9+ 0.4 dB. Optimization at higher gains results
in a larger gain variation across the band. The actual
measured gain when adjusted for high gain with minimum
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gain variation was 12 +0.6 dB over a 30-percent RF band-
width.

An X-band unbalanced unit was retuned to demonstrate
the wide-band capability of the cascode amplifier, the
result being a gain of § + 1 dB from 250 MHz to 15 GHz as
shown in Fig. 6.

E. High-Level Mixer

A planar doubly balanced high-level mixer has been
developed using microstrip, coplanar line, and slotline. The
mixer uses a combination of techniques reported by de
Ronde [4], Aikawa [5], and Dickens [6], [7]. Fig. 7 il-
lustrates the converter planar layout, and Fig. 8 shows the
top and bottom views of the converter mounted on a test
fixture. The topside circuit consists entirely of microstrip
circuitry, including the RF and IF ports, while the bottom
has the slotline and coplanar line with the diode quad
embedment circuits and LO port. The center conductor of
the LO coaxial port on the bottom side is connected
through the dielectric to the -topside microstrip LO port
location.

The RF signal is introduced to the two arms of the top
microstrip circuit out of phase through the microstrip-to-
slotline and slotline-to-microstrip transitions. The LO sig-
nal is introduced to the two arms of the microstrip circuit
in phase. Due to the in-phase, out-of-phase relationships
between RF and LO, a high degree of isolation exists
between the RF and LO ports.

- The RF and LO signals are next transferred to the
figure-eight coplanar circuit on the bottom side through
the two microstrip line to coplanar transitions. These sig-
nals traverse to the diode quad, which is located at the
center of the figure-eight circuit as shown in Figs. 7 and 9.
The LO turns on opposite diodes alternately (1 and 3, or 2
and 4) depending on the polarity of the signal. This alter-
nates the polarity of RF signal across the slot from node a
to node b at the LO rate. The RF modulated through a
reversing switch at the LO rate generates the IF (doubly
balanced mixer). The polarity of the IF is correct for
transition back to the topside slotline-to-microstrip transi-
tion. An alternate method of considering the mixer opera-
tion is to consider the polarity of the IF signal generated in
each diode and summing the resultant IF output as shown
in Fig. 7. A high degree of isolation exists between the RF
and LO ports to the IF port since these signals do not
couple to the IF port through the transition.

The unitized eight-diode high-barrier silicon beam-lead
ring quad was manufactured by Alpha Industries (DMJ
4759). Two high-barrier Schottky diodes with a combined.
voltage drop of 1.1 V for 1-mA forward current are located
on each of the four sides of the rectangular ring quad. The
quad measures 0.025 by 0.025 in, excluding the bonding
tabs, and it terminates the four 0.016-in wide slots with
minimal parasitics as shown in Fig. 9. The converter ex-
hibited a third-order intercept point of +28 dBm (input),
conversion loss of 7.5+0.5 dB, maximum spurious re-
sponse of —45 dBc for a signal level of +6 dBm, 1-dB
gain compression at +13-dBm input power, maximum
VSWR of 1.5:1, and minimum isolation of 25 dB between
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Fig. 7. High-level frequency converter lé.yout.

Mixer test fixture.

Fig. 8.

any port across the 2.6 to 5.2-GHz IF band (see Fig. 9).
The mixer used 23-dBm LO power at Ku-band with X-band
RF frequency. Identical mixers were used for downconver-
sion and upconversion and were constructed on Epsilam
10. The high third-order intercept point is a result of the
use of the eight high-barrier diode ring quad driven with
high LO power as opposed to a four low-barrier diode
quad and the diode quad embedment circuitry.

F. Dielectric Resonator FET Oscillator (DRO)

Fig. 10 illustrates the Ku-band FET DRO on Duroid
microstrip. A flange-mounted packaged MSC 88004 power
FET provided 0.5 W of output power (14-percent effi-
ciency) when stabilized. An open-circuited stub on the gate
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Fig. 10. Dielectric resonator FET oscillator.

at optimum length provides peak negative resistance when
the transistor’s output drain terminal is biased negative
with respect to ground. A puck of Transtec D-38 is stra-
tegically located on the output circuit to lock the frequency
to within +3 MHz from —55°C to 95°C. A microstrip
ferrite isolator cascaded by a branch-line hybrid coupler
provides two 23-dBm outputs to drive each mixer.

III.

Novel broad-band circuits coupled with advanced large-
scale-integration techniques have led to the development of
a high-performance, compact microwave module.

CONCLUSIONS
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